The goal of parscanlogreader is to read and process raw log files from Scikit-learn’s RandomizedSearchCV.
The development version can be installed from GitHub with:
devtools::install_github("kreh-team/parscanlogreader")
This is a basic example which shows you how the data pipeline works:
library(parscanlogreader) src_file <- "logs/cnn-gru-scan.log"
log_data_raw <- src_file %>% read_raw_log() %>% clean_log_data() log_data <- log_data_raw %>% summarise_log_data()
Note that the functions are able to automatically parse the parameters params_list
, numeric_params
, num_folds
, and num_models
from the raw log files.
If you want, you can manually set them yourself, as shown in the example below:
src_params_list <- c( "optimizers", "opt_recurrent_regs", "opt_kernel_regs", "opt_go_backwards", "opt_dropout_recurrent", "opt_dropout", "maxpool_size", "kernel_size", "gru_hidden_units", "filter_conv", "epochs", "batch_size", "activation_conv" ) src_numeric_params <- c( "opt_dropout_recurrent", "opt_dropout", "maxpool_size", "kernel_size", "gru_hidden_units", "filter_conv", "epochs", "batch_size" )
log_data_raw <- src_file %>% read_raw_log( params_list = src_params_list, numeric_params = src_numeric_params ) %>% clean_log_data() log_data <- log_data_raw %>% tidyr::drop_na() %>% summarise_log_data( params_list = src_params_list, num_folds = 5, num_models = 50 )